487 research outputs found

    Lactobacillus iners, the unusual suspect

    Get PDF

    The human vaginal microbial community

    Get PDF

    Comparison of five assays for DNA extraction from bacterial cells in human faecal samples

    Get PDF
    Aim To determine the most effective DNA extraction method for bacteria in faecal samples. Materials and Results This study assessed five commercial methods, that is, NucliSens easyMag, QIAamp DNA Stool Mini kit, PureLink Microbiome DNA purification kit, QIAamp PowerFecal DNA kit and RNeasy PowerMicrobiome kit, of which the latter has been optimized for DNA extraction. The DNA quantity and quality were determined using Nanodrop, Qubit and qPCR. The PowerMicrobiome kit recovered the highest DNA concentration, whereby this kit also recovered the highest gene copy number of Gram positives, Gram negatives and total bacteria. Furthermore, the PowerMicrobiome kit in combination with mechanical pre-treatment (bead beating) and with combined enzymatic and mechanical pre-treatment (proteinase K+mutanolysin+bead beating) was more effective than without pre-treatment. Conclusion From the five DNA extraction methods that were compared, the PowerMicrobiome kit, preceded by bead beating, which is standard included, was found to be the most effective DNA extraction method for bacteria in faecal samples. Significance and Impact of the Study The quantity and quality of DNA extracted from human faecal samples is a first important step to optimize molecular methods. Here we have shown that the PowerMicrobiome kit is an effective DNA extraction method for bacterial cells in faecal samples for downstream qPCR purpose

    p-Cresyl sulfate

    Get PDF
    If chronic kidney disease (CKD) is associated with an impairment of kidney function, several uremic solutes are retained. Some of these exert toxic effects, which are called uremic toxins. p-Cresyl sulfate (pCS) is a prototype protein-bound uremic toxin to which many biological and biochemical (toxic) effects have been attributed. In addition, increased levels of pCS have been associated with worsening outcomes in CKD patients. pCS finds its origin in the intestine where gut bacteria metabolize aromatic amino acids, such as tyrosine and phenylalanine, leading to phenolic end products, of which pCS is one of the components. In this review we summarize the biological effects of pCS and its metabolic origin in the intestine. It appears that, according to in vitro studies, the intestinal bacteria generating phenolic compounds mainly belong to the families Bacteroidaceae, Bifidobacteriaceae, Clostridiaceae, Enterobacteriaceae, Enterococcaceae, Eubacteriaceae, Fusobacteriaceae, Lachnospiraceae, Lactobacillaceae, Porphyromonadaceae, Staphylococcaceae, Ruminococcaceae, and Veillonellaceae. Since pCS remains difficult to remove by dialysis, the gut microbiota could be a future target to decrease pCS levels and its toxicity, even at earlier stages of CKD, aiming at slowing down the progression of the disease and decreasing the cardiovascular burden

    Nucleic acids enrichment of fungal pathogens to study host-pathogen interactions

    Get PDF
    Fungal infections, ranging from superficial to life-threatening infections, represent a major public health problem that affects 25% of the worldwide population. In this context, the study of host-pathogen interactions within the host is crucial to advance antifungal therapy. However, since fungal cells are usually outnumbered by host cells, the fungal transcriptome frequently remains uncovered. We compared three different methods to selectively lyse human cells from in vitro mixes, composed of Candida cells and peripheral blood mononuclear cells. In order to prevent transcriptional modification, the mixes were stored in RNAlater. We evaluated the enrichment of fungal cells through cell counting using microscopy and aimed to further enrich fungal nucleic acids by centrifugation and by reducing contaminant nucleic acids from the host. We verified the enrichment of fungal DNA and RNA through qPCR and RT-qPCR respectively and confirmed that the resulting RNA has high integrity scores, suitable for downstream applications. The enrichment method provided here, i.e., lysis with Buffer RLT followed by centrifugation, may contribute to increase the proportion of nucleic acids from fungi in clinical samples, thus promoting more comprehensive analysis of fungal transcriptional profiles. Although we focused on C. albicans, the enrichment may be applicable to other fungal pathogens

    Comparison of the efficiency of different cell lysis methods and different commercial methods for RNA extraction from Candida albicans stored in RNAlater

    Get PDF
    Background: Obtaining sufficient RNA yield and quality for comprehensive transcriptomic studies is cumbersome for clinical samples in which RNA from the pathogen is present in low numbers relative to the nucleic acids from the host, especially for pathogens, such as yeasts, with a solid cell wall. Therefore, yeast cell lysis including cell wall disruption constitutes an essential first step to maximize RNA yield. Moreover, during the last years, different methods for RNA extraction from yeasts have been developed, ranging from classic hot phenol methods to commercially available specific kits. They offer different RNA yield and quality, also depending on the original storage medium, such as RNAlater. Results: We observed that, for C. albicans cells stored in Tryptic Soy Broth with 15% glycerol, 10min of bead beating in a horizontal position in RiboPure Lysis Buffer provided complete cell lysis. Cell lysis efficiency was decreased to 73.5% when cells were stored in RNAlater. In addition, the RiboPure Yeast Kit (Ambion) offered the highest RNA yield in comparison with the automated platform NucliSENS easyMAG total nucleic extraction (bioMerieux) and the RNeasy Mini Kit (Qiagen) according to NanoDrop and Fragment Analyzer. Moreover, we showed that, in spite of the decrease of cell lysis efficiency after RNAlater storage, as compared to storage in TSB+15% glycerol, RNAlater increased RNA yield during RNA extraction with both RiboPure Yeast Kit and easyMAG, as confirmed by Fragment Analyzer analysis and by RT-qPCR of the RNA from the Internal Transcribed Spacer 2. Conclusions: In our hands, the most efficient cell lysis and highest RNA yield from C. albicans cells stored in RNAlater was obtained by horizontal bead beating in RiboPure Lysis Buffer followed by RNA extraction with the RiboPure Yeast Kit

    Gardnerella spp. pre-conditioned vs competitive multi-species biofilm growth and the impact on the tridimensional biofilm structure

    Get PDF
    Background: Bacterial vaginosis (BV) is one of the most common bacterial vaginal disorders among women of reproductive age. The hallmark of BV is the presence of a multi-species biofilm, formed primarily by Gardnerella spp., in a minor part by Atopobium vaginae, and also other anaerobic species. While a few studies have demonstrated that some BV-related species establish synergistic interactions with Gardnerella spp. in vitro dual-species biofilms, little is known regarding bacterial interactions in triple- species BV-associated biofilms. We evaluated the interactions and spatial distribution of Gardnerella spp., A. vaginae and a third BV-associated species, such as Enterococcus faecalis, Lactobacillus iners, Mobiluncus curtisii, Peptostreptococcus anaerobius, Prevotella bivia, and Staphylococcus hominis, using two distinct in vitro biofilm formation models.This study was supported by the Portuguese Foundation for Science and Technology (FCT) by the funded project PTDC/BIA-MIC/28271/2017, under the scope of COMPETE2020 (POCI-01-0145- FEDER-028271) and by the strategic funding of unit UID/BIO/04469/2019.info:eu-repo/semantics/publishedVersio
    • …
    corecore